Hypoxia enhances the expression of prostate-specific antigen by modifying the quantity and catalytic activity of Jumonji C domain-containing histone demethylases.
نویسندگان
چکیده
Oxygen concentration in prostate cancer tissue is significantly low, i.e. ~0.3% O2. This study showed that pathological hypoxia (<0.5% O2) increased the expression of androgen receptor (AR) target genes such as prostate-specific antigen (PSA) and kallikrein-related peptidase 2 in LNCaP human prostate cancer cells by modifying the quantity and activity of related Jumonji C domain-containing histone demethylases (JMJDs). Under pathological hypoxia, the catalytic activities of JMJD2A, JMJD2C and Jumonji/ARID domain-containing protein 1B (JARID1B) were blocked due to the lack of their substrate, i.e. oxygen. Chromatin immunoprecipitation analyses showed that hypoxia increased the appearance of H3K9me3 and H3K4me3, substrates of JMJD2s and JARID1B, respectively, in the PSA enhancer. In contrast, JMJD1A, which demethylates both H3K9me2 and H3K9me1, maintained its catalytic activity even under severe hypoxia. Furthermore, hypoxia increased the expression of JMJD1A. Hypoxia and androgen additively increased the recruitment of JMJD1A and p300 on the enhancer region of PSA through interaction with the hypoxia-inducible factor-1α and AR, both of which bind the PSA enhancer. Thus, hypoxia enhanced the demethylation of H3K9me2 and H3K9me1, leading to provide unmethylated H3K9 residues that are substrates for histone acetyltransferase, p300. Consequently, hypoxia increased the acetylation of histones of the PSA enhancer, which facilitates its transcription.
منابع مشابه
Hypoxia suffocates histone demethylases to change gene expression: a metabolic control of histone methylation
Hypoxia affects various physiological and pathophyological processes. Hypoxia changes the expression of hypoxiaresponsive genes through two main pathways. First, hypoxia activates transcription factors (TF) such as Hypoxia-inducible Factor (HIF). Second, hypoxia decreases the activity of Jumonji C domain-containing histone demethylases (JMJDs) that require O2 and α-Ketoglutarate (α-KG) as subst...
متن کاملRegulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha.
The transcription factor HIF (hypoxia-inducible factor) mediates a highly pleiotrophic response to hypoxia. Many recent studies have focused on defining the extent of this transcriptional response. In the present study we have analysed regulation by hypoxia among transcripts encoding human Fe(II)- and 2-oxoglutarate-dependent oxygenases. Our results show that many of these genes are regulated b...
متن کاملInvestigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach
Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active genes. In this light, the aim of this study was to invest...
متن کاملCharacterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases.
The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-dependent demethylases remove methyl groups from tri- and dimethylated lysine 4 of histone H3. Accumulating evidence from primary tumors and model systems supports a role for KDM5A (JARID1A/RBP2) and KDM5B (JARID1B/PLU1) as oncogenic drivers. The KDM5 family is unique among the Jumonji domain-containing histone demethylases in that there is ...
متن کاملThe histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF.
Posttranslational histone modifications serve to store epigenetic information and control both nucleosome assembly and recruitment of non-histone proteins. Histone methylation occurs on arginine and lysine residues and is involved in the regulation of gene transcription. A dynamic control of these modifications is exerted by histone methyltransferases and the recently discovered histone demethy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 34 12 شماره
صفحات -
تاریخ انتشار 2013